Liangyi Chen
Boya Distinguished Professor, Institute of Molecular Medicine, Peking University
Liangyi Chen is Boya Professor of Peking University. He obtained his undergraduate degrees Biomedical engineering in Xi’an JiaoTong University, then majored in Biomedical engineering in pursuing PhD degree in Huazhong University of Science and Technology.

His lab focused on two interweaved aspects: the development of new imaging and quantitative image analysis algorithms, and the application of these technology to study how glucose-stimulated insulin secretion is regulated in the health and disease at multiple levels (single cells, islets and in vivo) in the health and disease animal models. The techniques developed included ultrasensitive Hessian structured illumination microscopy (Hessian SIM) for live cell super-resolution imaging, the Sparse deconvolution algorithm for extending spatial resolution of fluorescence microscopes limited by the optics, Super-resolution fluorescence-assisted diffraction computational tomography (SR-FACT) for revealing the three-dimensional landscape of the cellular organelle interactome, two-photon three-axis digital scanned lightsheet microscopy (2P3A-DSLM) for tissue and small organism imaging, and fast High-resolution Miniature Two-photon Microscopy (FHIRM-TPM) for Brain Imaging in Freely-behaving Mice.

He is recipient of the National Distinguish Scholar Fund project from National Natural Science Foundation of China, and also a guest professor at Université PSL and École Normale Supérieure.
banner

Stay in the loop!

Subscribe to keep up with the latest from Croucher Foundation.

Passionate about science?
Stay updated with the latest scientific developments in Hong Kong through Croucher News.

Subscribe to our regular newsletter and receive a digest of key science stories straight to your inbox. You'll also get updates from the Croucher Foundation on scholarships, scientific exchanges, and more.

Subscribe now and stay informed about Hong Kong's dynamic scientific landscape.

Email

First name

Last name

Organisation